Capillaroscopy in Systemic Autoimmune Rheumatic Diseases: A Clinical Tool Linking Diagnosis and Pathogenesis
DOI:
https://doi.org/10.58931/crt.2025.2157Abstract
Systemic autoimmune rheumatic diseases (SARDs) including systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and idiopathic inflammatory myopathies (IIMs) are multisystemic, potentially life-threatening autoimmune diseases. These diseases are associated with the highest frequency of disease-associated morbidity and mortality among rheumatic diseases, largely because their complex pathophysiology remains poorly and incompletely understood. Mortality in SARDs is associated with profound vascular dysfunction ranging from cardiovascular disease to more discreet localized vascular complications including Raynaud’s phenomenon (RP), digital ulcers, and pulmonary arterial hypertension (PAH). These vascular complications stem from damage to endothelial cells caused by immune complex deposition, platelet activation, autoantibodies that promote thrombosis (e.g., antiphospholipid antibodies), and immune dysregulation.
The relationship between endothelial cell dysfunction and SARDs was first recognized by Maurice Raynaud in the 19th-century, particularly in the context of localized digital ischemia and gangrene. RP is a frequently-encountered problem in clinical practice, with a prevalence in the general population ranging from approximately 5–18%. While most cases of RP are not associated with SARDs, patients with SARDs commonly experience RP. This underscores the importance of vasculopathy related to endothelial dysfunction in the pathogenesis of SARDs.
RP is often the earliest presenting feature in up to 20% of patients with SARDs. Indeed, greater than 95% of patients with SSc experience RP.11 Patients with SLE, IIMs including anti‑synthetase syndrome (ASyS), and Sjögren’s disease are also commonly affected. Hence, a closer evaluation for microvascular changes is paramount in the clinical assessment of patients with SARDs. This article will review how nailfold video capillaroscopy is emerging as a valuable point-of-care tool for diagnosis and risk stratification by providing a window into the underlying endothelial dysfunction observed in these conditions.
References
Choi MY, Costenbader KH, Fritzler MJ. Environment and systemic autoimmune rheumatic diseases: an overview and future directions. Front Immunol. 2024;15:1456145. doi:10.3389/fimmu.2024.1456145 DOI: https://doi.org/10.3389/fimmu.2024.1456145
Bournia VK, Fragoulis GE, Mitrou P, Mathioudakis K, Tsolakidis A, Konstantonis G, et al. All-cause mortality in systemic rheumatic diseases under treatment compared with the general population, 2015-2019. RMD Open. 2021;7(3). doi:10.1136/ DOI: https://doi.org/10.1136/rmdopen-2021-001694
Raschi E, Privitera D, Bodio C, Lonati PA, Borghi MO, Ingegnoli F, et al. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: an early event in the pathogenesis of systemic sclerosis. Arthritis Res Ther. 2020;22(1):265. doi:10.1186/s13075-020-02360-3 DOI: https://doi.org/10.1186/s13075-020-02360-3
Ramirez GA, Franchini S, Rovere-Querini P, Sabbadini MG, Manfredi AA, Maugeri N. The role of platelets in the pathogenesis of systemic sclerosis. Front Immunol. 2012;3:160. doi:10.3389/fimmu.2012.00160 DOI: https://doi.org/10.3389/fimmu.2012.00160
Merashli M, Alves J, Ames PRJ. Clinical relevance of antiphospholipid antibodies in systemic sclerosis: A systematic review and meta-analysis. Semin Arthritis Rheum. 2017;46(5):615-624. doi:10.1016/j.semarthrit.2016.10.004 DOI: https://doi.org/10.1016/j.semarthrit.2016.10.004
Chizzolini C, Brembilla NC, Montanari E, Truchetet ME. Fibrosis and immune dysregulation in systemic sclerosis. Autoimmun Rev. 2011;10(5):276-281. doi:10.1016/j.autrev.2010.09.016 DOI: https://doi.org/10.1016/j.autrev.2010.09.016
Maverakis E, Patel F, Kronenberg DG, Chung L, Fiorentino D, Allanore Y, et al. International consensus criteria for the diagnosis of Raynaud’s phenomenon. J Autoimmun. 2014;48-49:60-65. doi:10.1016/j.jaut.2014.01.020 DOI: https://doi.org/10.1016/j.jaut.2014.01.020
Garner R, Kumari R, Lanyon P, Doherty M, Zhang W. Prevalence, risk factors and associations of primary Raynaud’s phenomenon: systematic review and meta-analysis of observational studies. BMJ Open. 2015;5(3):e006389. doi:10.1136/bmjopen-2014-006389 DOI: https://doi.org/10.1136/bmjopen-2014-006389
Choi E, Henkin S. Raynaud’s phenomenon and related vasospastic disorders. Vasc Med. 2021;26(1):56-70. doi:10.1177/1358863X20983455 DOI: https://doi.org/10.1177/1358863X20983455
Frech TM, Murtaugh MA, Amuan M, Pugh MJ. The frequency of Raynaud’s phenomenon, very early diagnosis of systemic sclerosis, and systemic sclerosis in a large Veteran Health Administration database. BMC Rheumatol. 2021;5(1):42. doi:10.1186/s41927-021-00209-z DOI: https://doi.org/10.1186/s41927-021-00209-z
Haque A, Hughes M. Raynaud’s phenomenon. Clin Med (Lond). 2020;20(6):580-587. doi:10.7861/clinmed.2020-0754 DOI: https://doi.org/10.7861/clinmed.2020-0754
Maciejewska M, Sikora M, Maciejewski C, Alda-Malicka R, Czuwara J, Rudnicka L. Raynaud’s phenomenon with focus on systemic sclerosis. J Clin Med. 2022;11(9). doi:10.3390/jcm11092490 DOI: https://doi.org/10.3390/jcm11092490
Moroncini G, Mori S, Tonnini C, Gabrielli A. Role of viral infections in the etiopathogenesis of systemic sclerosis. Clin Exp Rheumatol. 2013;31(2 Suppl 76):3-7.
Lercara A, Sulli A, Pizzorni C, Gotelli E, Paolino S, Cere A, et al. Do cosmetic silicone implants trigger systemic sclerosis? Ann Rheum Dis. 2022;81:1495. doi:10.1136/annrheumdis-2022-eular.4801 DOI: https://doi.org/10.1136/annrheumdis-2022-eular.4801
Tang B, Shi Y, Zeng Z, He X, Yu J, Chai K, et al. Silica’s silent threat: contributing to skin fibrosis in systemic sclerosis by targeting the HDAC4/Smad2/3 pathway. Environ Pollut. 2024;355:124194. doi:10.1016/j.envpol.2024.124194 DOI: https://doi.org/10.1016/j.envpol.2024.124194
Patnaik E, Lyons M, Tran K, Pattanaik D. Endothelial dysfunction in systemic sclerosis. Int J Mol Sci. 2023;24(18). doi:10.3390/ijms241814385 DOI: https://doi.org/10.3390/ijms241814385
Luo Y, Khan A, Liu L, Lee CH, Perreault GJ, Pomenti SF, et al. Cross-phenotype GWAS Supports shared genetic susceptibility to systemic sclerosis and primary biliary cholangitis. medRxiv. 2024. doi:10.1101/2024.07.01.24309721 DOI: https://doi.org/10.1101/2024.07.01.24309721
Hill CL, Nguyen AM, Roder D, Roberts-Thomson P. Risk of cancer in patients with scleroderma: a population based cohort study. Ann Rheum Dis. 2003;62(8):728-731. doi:10.1136/ard.62.8.728 DOI: https://doi.org/10.1136/ard.62.8.728
Vijayraghavan S, Blouin T, McCollum J, Porcher L, Virard F, Zavadil J, et al. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat Commun. 2024;15(1):8889. doi:10.1038/s41467-024-53332-z DOI: https://doi.org/10.1038/s41467-024-53332-z
Gniadecki R, Iyer A, Hennessey D, Khan L, O’Keefe S, Redmond D, et al. Genomic instability in early systemic sclerosis. J Autoimmun. 2022;131:102847. doi:10.1016/j.jaut.2022.102847 DOI: https://doi.org/10.1016/j.jaut.2022.102847
Pacholczak-Madej R, Kuszmiersz P, Bazan-Socha S, Kosalka-Wegiel J, Iwaniec T, Zareba L, et al. Endothelial dysfunction in patients with systemic sclerosis. Postepy Dermatol Alergol. 2020;37(4):495-502. doi:10.5114/ada.2019.83501 DOI: https://doi.org/10.5114/ada.2019.83501
Hinchcliff M, Khanna D, De Lorenzis E, Di Donato S, Carriero A, Ross RL, et al. Serum type I interferon score as a disease activity biomarker in patients with diffuse cutaneous systemic sclerosis: a retrospective cohort study. Lancet Rheumatol. 2025. doi:10.1016/S2665-9913(24)00403-X DOI: https://doi.org/10.1016/S2665-9913(24)00403-X
Yin H, Distler O, Shen L, Xu X, Yuan Y, Li R, et al. Endothelial response to Type I interferon contributes to vasculopathy and fibrosis and predicts disease progression of systemic sclerosis. Arthritis Rheumatol. 2024;76(1):78-91. doi:10.1002/art.42662 DOI: https://doi.org/10.1002/art.42662
Di Donato S, Ross R, Karanth R, Kakkar V, De Lorenzis E, Bissell LA, et al. Serum Type I Interferon Score predicts clinically meaningful disease progression in limited cutaneous Systemic Sclerosis. Arthritis Rheumatol. 2025. doi:10.1002/art.43120 DOI: https://doi.org/10.1002/art.43120
Mai L, Asaduzzaman A, Noamani B, Fortin PR, Gladman DD, Touma Z, et al. The baseline interferon signature predicts disease severity over the subsequent 5 years in systemic lupus erythematosus. Arthritis Res Ther. 2021;23(1):29. doi:10.1186/s13075-021-02414-0 DOI: https://doi.org/10.1186/s13075-021-02414-0
Gomez D, Reich NC. Stimulation of primary human endothelial cell proliferation by IFN. J Immunol. 2003;170(11):5373-5381. doi:10.4049/jimmunol.170.11.5373 DOI: https://doi.org/10.4049/jimmunol.170.11.5373
Aozasa N, Asano Y, Akamata K, Noda S, Masui Y, Yamada D, et al. Serum apelin levels: clinical association with vascular involvements in patients with systemic sclerosis. J Eur Acad Dermatol Venereol. 2013;27(1):37-42. doi:10.1111/j.1468-3083.2011.04354.x DOI: https://doi.org/10.1111/j.1468-3083.2011.04354.x
Yoshizaki A, Komura K, Iwata Y, Ogawa F, Hara T, Muroi E, et al. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: association with disease severity. J Clin Immunol. 2009;29(2):180-189. doi:10.1007/s10875-008-9252-x DOI: https://doi.org/10.1007/s10875-008-9252-x
Dong Y, Ming B, Dong L. The role of HMGB1 in rheumatic diseases. Front Immunol. 2022;13:815257. doi:10.3389/fimmu.2022.815257 DOI: https://doi.org/10.3389/fimmu.2022.815257
Carvalheiro T, Zimmermann M, Radstake T, Marut W. Novel insights into dendritic cells in the pathogenesis of systemic sclerosis. Clin Exp Immunol. 2020;201(1):25-33. doi:10.1111/cei.13417 DOI: https://doi.org/10.1111/cei.13417
Bruni C, Frech T, Manetti M, Rossi FW, Furst DE, De Paulis A, et al. Vascular leaking, a pivotal and early pathogenetic event in systemic sclerosis: should the door be closed? Front Immunol. 2018;9:2045. doi:10.3389/fimmu.2018.02045 DOI: https://doi.org/10.3389/fimmu.2018.02045
Stull C, Sprow G, Werth VP. Cutaneous involvement in systemic lupus erythematosus: a review for the rheumatologist. J Rheumatol. 2023;50(1):27-35. doi:10.3899/jrheum.220089 DOI: https://doi.org/10.3899/jrheum.220089
Amato AA, Greenberg SA. Inflammatory myopathies. Continuum (Minneap Minn). 2013;19(6 Muscle Disease):1615-1633. doi:10.1212/01.CON.0000440662.26427.bd DOI: https://doi.org/10.1212/01.CON.0000440662.26427.bd
Maricq HR, Spencer-Green G, LeRoy EC. Skin capillary abnormalities as indicators of organ involvement in scleroderma (systemic sclerosis), Raynaud’s syndrome and dermatomyositis. Am J Med. 1976;61(6):862-870. doi:10.1016/0002-9343(76)90410-1 DOI: https://doi.org/10.1016/0002-9343(76)90410-1
Maricq HR. Wide-field capillary microscopy. Arthritis Rheum. 1981;24(9):1159-1165. doi:10.1002/art.1780240907 DOI: https://doi.org/10.1002/art.1780240907
Smith V, Herrick AL, Ingegnoli F, Damjanov N, De Angelis R, Denton CP, et al. Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud’s phenomenon and systemic sclerosis. Autoimmun Rev. 2020;19(3):102458. doi:10.1016/j.autrev.2020.102458 DOI: https://doi.org/10.1016/j.autrev.2020.102458
LeRoy EC, Medsger TA, Jr. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001;28(7):1573-1576.
Koenig M, Joyal F, Fritzler MJ, Roussin A, Abrahamowicz M, Boire G, et al. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud’s phenomenon to systemic sclerosis: a twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum. 2008;58(12):3902-3912. doi:10.1002/art.24038 DOI: https://doi.org/10.1002/art.24038
Bellando-Randone S, Del Galdo F, Lepri G, Minier T, Huscher D, Furst DE, et al. Progression of patients with Raynaud’s phenomenon to systemic sclerosis: a five-year analysis of the European Scleroderma Trial and Research group multicentre, longitudinal registry study for Very Early Diagnosis of Systemic Sclerosis (VEDOSS). Lancet Rheumatol. 2021;3(12):e834-e843. doi:10.1016/S2665-9913(21)00244-7 DOI: https://doi.org/10.1016/S2665-9913(21)00244-7
Minier T, Guiducci S, Bellando-Randone S, Bruni C, Lepri G, Czirjak L, et al. Preliminary analysis of the very early diagnosis of systemic sclerosis (VEDOSS) EUSTAR multicentre study: evidence for puffy fingers as a pivotal sign for suspicion of systemic sclerosis. Ann Rheum Dis. 2014;73(12):2087-2093. doi:10.1136/annrheumdis-2013-203716 DOI: https://doi.org/10.1136/annrheumdis-2013-203716
Cutolo M, Herrick AL, Distler O, Becker MO, Beltran E, Carpentier P, et al. Nailfold videocapillaroscopic features and other clinical risk factors for digital ulcers in systemic sclerosis: a multicenter, prospective cohort study. Arthritis Rheumatol. 2016;68(10):2527-2539. doi:10.1002/art.39718 DOI: https://doi.org/10.1002/art.39718
Avouac J, Lepri G, Smith V, Toniolo E, Hurabielle C, Vallet A, et al. Sequential nailfold videocapillaroscopy examinations have responsiveness to detect organ progression in systemic sclerosis. Semin Arthritis Rheum. 2017;47(1):86-94. doi:10.1016/j.semarthrit.2017.02.006 DOI: https://doi.org/10.1016/j.semarthrit.2017.02.006
Guillen-Del-Castillo A, Simeon-Aznar CP, Callejas-Moraga EL, Tolosa-Vilella C, Alonso-Vila S, Fonollosa-Pla V, et al. Quantitative videocapillaroscopy correlates with functional respiratory parameters: a clue for vasculopathy as a pathogenic mechanism for lung injury in systemic sclerosis. Arthritis Res Ther. 2018;20(1):281. doi:10.1186/s13075-018-1775-9 DOI: https://doi.org/10.1186/s13075-018-1775-9
Santana-Goncalves M, Zanin-Silva D, Henrique-Neto A, Moraes DA, Kawashima-Vasconcelos MY, Lima-Junior JR, et al. Autologous hematopoietic stem cell transplantation modifies specific aspects of systemic sclerosis-related microvasculopathy. Ther Adv Musculoskelet Dis. 2022;14:1759720X221084845. doi:10.1177/1759720X221084845 DOI: https://doi.org/10.1177/1759720X221084845
Morgan ND, Hummers LK. Scleroderma mimickers. Curr Treatm Opt Rheumatol. 2016;2(1):69-84. doi:10.1007/s40674-016-0038-7 DOI: https://doi.org/10.1007/s40674-016-0038-7
Papara C, De Luca DA, Bieber K, Vorobyev A, Ludwig RJ. Morphea: The 2023 update. Front Med (Lausanne). 2023;10:1108623. doi:10.3389/fmed.2023.1108623 DOI: https://doi.org/10.3389/fmed.2023.1108623
Trang G, Steele R, Baron M, Hudson M. Corticosteroids and the risk of scleroderma renal crisis: a systematic review. Rheumatol Int. 2012;32(3):645-653. doi:10.1007/s00296-010-1697-6 DOI: https://doi.org/10.1007/s00296-010-1697-6
Umashankar E, Abdel-Shaheed C, Plit M, Girgis L. Assessing the role for nailfold videocapillaroscopy in interstitial lung disease classfication: a systematic review and meta-analysis. Rheumatology (Oxford). 2022;61(6):2221-2234. doi:10.1093/rheumatology/keab772 DOI: https://doi.org/10.1093/rheumatology/keab772
Tang M, Shi J, Pang Y, Zhou S, Liu J, Wu C, et al. Nailfold videocapillaroscopy findings are associated with IIM subtypes and IFN activation. Arthritis Res Ther. 2025;27(1):62. doi:10.1186/s13075-025-03532-9 DOI: https://doi.org/10.1186/s13075-025-03532-9
Kubo S, Todoroki Y, Nakayamada S, Nakano K, Satoh M, Nawata A, et al. Significance of nailfold videocapillaroscopy in patients with idiopathic inflammatory myopathies. Rheumatology (Oxford). 2019;58(1):120-130. doi:10.1093/rheumatology/key257 DOI: https://doi.org/10.1093/rheumatology/key257
Johnson D, van Eeden C, Moazab N, Redmond D, Phan C, Keeling S, et al. Nailfold capillaroscopy abnormalities correlate with disease activity in adult dermatomyositis. Front Med (Lausanne). 2021;8:708432. doi:10.3389/fmed.2021.708432 DOI: https://doi.org/10.3389/fmed.2021.708432
Soubrier C, Seguier J, Di Costanzo MP, Ebbo M, Bernit E, Jean E, et al. Nailfold videocapillaroscopy alterations in dermatomyositis, antisynthetase syndrome, overlap myositis, and immune-mediated necrotizing myopathy. Clin Rheumatol. 2019;38(12):3451-3458. doi:10.1007/s10067-019-04710-2 DOI: https://doi.org/10.1007/s10067-019-04710-2
Wakura R, Matsuda S, Kotani T, Shoda T, Takeuchi T. The comparison of nailfold videocapillaroscopy findings between anti-melanoma differentiation-associated gene 5 antibody and anti-aminoacyl tRNA synthetase antibody in patients with dermatomyositis complicated by interstitial lung disease. Sci Rep. 2020;10(1):15692. doi:10.1038/s41598-020-72752-7 DOI: https://doi.org/10.1038/s41598-020-72752-7
Selva-O’Callaghan A, Fonollosa-Pla V, Trallero-Araguas E, Martinez-Gomez X, Simeon-Aznar CP, Labrador-Horrillo M, et al. Nailfold capillary microscopy in adults with inflammatory myopathy. Semin Arthritis Rheum. 2010;39(5):398-404. doi:10.1016/j.semarthrit.2008.09.003 DOI: https://doi.org/10.1016/j.semarthrit.2008.09.003
Schmeling H, Stephens S, Goia C, Manlhiot C, Schneider R, Luthra S, et al. Nailfold capillary density is importantly associated over time with muscle and skin disease activity in juvenile dermatomyositis. Rheumatology (Oxford). 2011;50(5):885-893. doi:10.1093/rheumatology/keq407 DOI: https://doi.org/10.1093/rheumatology/keq407
Bogojevic M, Markovic Vlaisavljevic M, Medjedovic R, Strujic E, Pravilovic Lutovac D, Pavlov-Dolijanovic S. Nailfold capillaroscopy changes in patients with idiopathic inflammatory myopathies. J Clin Med. 2024;13(18). doi:10.3390/jcm13185550 DOI: https://doi.org/10.3390/jcm13185550
Pachman LM, Morgan G, Klein-Gitelman MS, Ahsan N, Khojah A. Nailfold capillary density in 140 untreated children with juvenile dermatomyositis: an indicator of disease activity. Pediatr Rheumatol Online J. 2023;21(1):118. doi:10.1186/s12969-023-00903-x DOI: https://doi.org/10.1186/s12969-023-00903-x
Sebastiani M, Triantafyllias K, Manfredi A, Gonzalez-Gay MA, Palmou-Fontana N, Cassone G, et al. Nailfold capillaroscopy characteristics of antisynthetase syndrome and possible clinical associations: results of a multicenter international study. J Rheumatol. 2019;46(3):279-284. doi:10.3899/jrheum.180355 DOI: https://doi.org/10.3899/jrheum.180355
Cutolo M, Melsens K, Wijnant S, Ingegnoli F, Thevissen K, De Keyser F, et al. Nailfold capillaroscopy in systemic lupus erythematosus: A systematic review and critical appraisal. Autoimmun Rev. 2018;17(4):344-352. doi:10.1016/j.autrev.2017.11.025 DOI: https://doi.org/10.1016/j.autrev.2017.11.025
Cutolo M, Sulli A, Pizzorni C, Accardo S. Nailfold videocapillaroscopy assessment of microvascular damage in systemic sclerosis. J Rheumatol. 2000;27(1):155-160.
Pavlov-Dolijanovic S, Damjanov NS, Vujasinovic Stupar NZ, Marcetic DR, Sefik-Bukilica MN, Petrovic RR. Is there a difference in systemic lupus erythematosus with and without Raynaud’s phenomenon? Rheumatol Int. 2013;33(4):859-865. doi:10.1007/s00296-012-2449-6 DOI: https://doi.org/10.1007/s00296-012-2449-6
Tariq S, Tervaert JWC, Osman M. Nailfold capillaroscopy in systemic lupus erythematosus (SLE): a point-of-care tool that parallels disease activity and predicts future complications. Curr Treatm Opt Rheumatol. 2019;5:336-345. doi:https://doi.org/10.1007/s40674-019-00133-x DOI: https://doi.org/10.1007/s40674-019-00133-x
Riccieri V, Spadaro A, Ceccarelli F, Scrivo R, Germano V, Valesini G. Nailfold capillaroscopy changes in systemic lupus erythematosus: correlations with disease activity and autoantibody profile. Lupus. 2005;14(7):521-525. doi:10.1191/0961203305lu2151oa DOI: https://doi.org/10.1191/0961203305lu2151oa
Kuryliszyn-Moskal A, Ciolkiewicz M, Klimiuk PA, Sierakowski S. Clinical significance of nailfold capillaroscopy in systemic lupus erythematosus: correlation with endothelial cell activation markers and disease activity. Scand J Rheumatol. 2009;38(1):38-45. doi:10.1080/03009740802366050 DOI: https://doi.org/10.1080/03009740802366050
Groen H, ter Borg EJ, Postma DS, Wouda AA, van der Mark TW, Kallenberg CG. Pulmonary function in systemic lupus erythematosus is related to distinct clinical, serologic, and nailfold capillary patterns. Am J Med. 1992;93(6):619-627. doi:10.1016/0002-9343(92)90194-g DOI: https://doi.org/10.1016/0002-9343(92)90194-G
Lee P, Leung FY, Alderdice C, Armstrong SK. Nailfold capillary microscopy in the connective tissue diseases: a semiquantitative assessment. J Rheumatol. 1983;10(6):930-938.
Anghel D, Sîrbu CA, Petrache OG, Opriș-Belinski D, Negru MM, Bojincă VC, et al. Nailfold Videocapillaroscopy in patients with rheumatoid arthritis and psoriatic arthropathy on ANTI-TNF-ALPHA therapy. Diagnostics (Basel). 2023;13(12). doi:10.3390/diagnostics13122079 DOI: https://doi.org/10.3390/diagnostics13122079
Melsens K, Leone MC, Paolino S, Elewaut D, Gerli R, Vanhaecke A, et al. Nailfold capillaroscopy in Sjogren’s syndrome: a systematic literature review and standardised interpretation. Clin Exp Rheumatol. 2020;38 Suppl 126(4):150-157.
Matsuda S, Kotani T, Wakura R, Suzuka T, Kuwabara H, Kiboshi T, et al. Examination of nailfold videocapillaroscopy findings in ANCA-associated vasculitis. Rheumatology (Oxford). 2023;62(2):747-757. doi:10.1093/rheumatology/keac402 DOI: https://doi.org/10.1093/rheumatology/keac402
Lledo-Ibanez GM, Saez Comet L, Freire Dapena M, Mesa Navas M, Martin Cascon M, Guillen Del Castillo A, et al. CAPI-detect: machine learning in capillaroscopy reveals new variables influencing diagnosis. Rheumatology (Oxford). 2025. doi:10.1093/rheumatology/keaf073 DOI: https://doi.org/10.1093/rheumatology/keaf073
Ma Z, Mulder DJ, Gniadecki R, Cohen Tervaert JW, Osman M. Methods of assessing nailfold capillaroscopy compared to video capillaroscopy in patients with systemic sclerosis-a critical review of the literature. Diagnostics (Basel). 2023;13(13). doi:10.3390/diagnostics13132204 DOI: https://doi.org/10.3390/diagnostics13132204

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Canadian Rheumatology Today

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.